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Deep Generative Models:
Diffusion Models



• Denoising Diffusion Probabilistic Models
• Conditional Diffusion Models: Stable Diffusion, ControlNet, VideoFusion

Outline



• A denoising diffusion probabilistic model is a parameterized Markov chain trained 
using variational inference to produce samples matching the data after finite 
time.
• DDPM learns to reverse a forward diffusion process. The forward process 

gradually adds gaussian noise to the data until signal (i.e., the image) is 
destroyed. The reverse process predicts how to denoise.

Denoising Diffusion Probabilistic Models (DDPM)



• We can view DDPM as a Markovian Hierarchical Variational Autoencoder 
(MHVAE) with 𝑇 hierarchical latents 𝑧 = 𝑧!:# = 𝑧$ $%!

#  modeled by a Markov 
chain where each latent 𝑧$  is generated only from the previous latent 𝑧$&!.

• What is the VAE encoder 𝑞(𝑧 ∣ 𝑥) of DDPM? 
• What is the VAE decoder 𝑝(𝑥 ∣ 𝑧) of DDPM? 
• What is the ELBO of DDPM? 

Denoising Diffusion Probabilistic Models (DDPM)

𝑧 = 𝑧!:# = 𝑧$ $%!
#



• Evidence Lower Bound (ELBO)

• Decomposition of the ELBO

Let us Recall the Training Objective of the VAE



• A MHVAE is a VAE whose encoder and decoder are autoregressive models:

• Given this joint distribution and posterior, we can further rewrite the ELBO for 
MHVAE (details see next page):

MHVAE: the Latent Variable is Autoregressive

𝑝 𝑥, 𝑧!:# = 𝑝 𝑧# 𝑝& 𝑥 𝑧! &
$%'

#

𝑝& 𝑧$(! 𝑧$

𝑞) 𝑧!:# 𝑥 = 𝑞) 𝑧! 𝑥 &
$%'

#

𝑞) 𝑧$ 𝑧$(!



• A DDPM is an MHVAE: 𝑥' = 𝑥 is the data and 𝑥!:# = 𝑧!:#  is the latent variable 
• All latent variables have the same dimension as the dimension of the data
• The structure of the encoder 𝑞 𝑥!:# 𝑥' = ∏$%!

# 𝑞(𝑥$ ∣ 𝑥$(!) is not learned, 
but it is pre-specified as a linear Gaussian model

• The parameter 𝛼$  is chosen such that 𝑥# ∼ 𝒩(𝑥#; 0, 𝐼) is a standard Gaussian

Denoising Diffusion Probabilistic Models (DDPM)



Given the formulation of a single noising step

 𝑥$ = α$𝑥$(! + 1 − α$ 	ϵ, ϵ ∼ 𝒩 ϵ; 0, 𝐼 , 
we can recursively derive the closed form for 
arbitrary noising steps  

𝑥$ = α$𝑥' + 1 − α$ 	𝜖,ϵ ∼ 𝒩 ϵ; 0, 𝐼

• That is

𝑥' =
𝑥$ − 1 − α$ϵ'

α$
• We will use this for the reparameterization 

trick later.

The Forward Process of DDPM



Note that, due to the Markov assumption of DDPM, the next phase is only 
conditioned on the previous adjacent phase. We can rewrite the encoder 
transitions using the trick:

This is because the extra conditioning term is superfluous and does not affect the 
conditional distribution. 

We will use this derivation when rewriting the ELBO for DDPM.

The Forward Process of DDPM

𝑞 𝑥$ 𝑥$(! 	
                                            = 𝑞 𝑥$ 𝑥$(!, 𝑥*  

                                            = + 𝑥$(! 𝑥$, 𝑥* + 𝑥$ 𝑥*
+ 𝑥$(! 𝑥*



Given assumptions of DDPM, we rewrite the joint distribution of a MHVAE to write 
the joint distribution for DDPM as the product of decoder transitions (reverse 
process):

The ELBO for DDPM is (details elaborated in next page):

The Reverse Process of DDPM

𝑝 𝑥*:# = 𝑝 𝑥# &
$%!

#
𝑝& 𝑥$(! 𝑥$ where 𝑝 𝑥# = 𝒩 𝑥#; 0, 𝐼 .



Interpretation of the ELBO for Diffusion Model
log 𝑝 𝒙 = ⋯

= 𝐸! 𝑥" 𝑥# log 𝑝$ 𝑥# 𝑥"

reconstruc)on term 

− 𝐷KL 𝑞 𝑥% 𝑥# |𝑝 𝑥%

prior matching term 

−9
&'(

%

𝐸! 𝑥& 𝑥# 𝐷KL 𝑞 𝑥&)" 𝑥& , 𝑥# 	||	𝑝$ 𝑥&)" 𝑥&

denoising matching term 

𝐸+ 𝑥! 𝑥* log 𝑝& 𝑥* 𝑥!  can be interpreted as a reconstruction term; like its 
analogue in the ELBO of a vanilla VAE, this term can be approximated and optimized 
using a Monte Carlo estimate.

𝐷KL 𝑞 𝑥# 𝑥* |𝑝 𝑥# 	represents how close the distribution of the final noisified 
input is to the standard Gaussian prior. It has no trainable parameters, and is also equal 
to zero under our assumptions.

𝐸+ 𝑥$ 𝑥* 𝐷KL 𝑞 𝑥$(! 𝑥$, 𝑥* 	||	𝑝& 𝑥$(! 𝑥$  is a denoising matching term. We 
learn desired denoising transition step 𝑝& 𝑥$(! 𝑥$  as an approximation to tractable, 
ground-truth denoising transition step 𝑞 𝑥$(! 𝑥$, 𝑥* .



• To compute the third term, we need

• Letting                    , recall that

• Therefore

ELBO for a DDPM: Denoising Matching Term



• Recall KL divergence for Gaussians

• Choose variance of p to match exactly variance of q

• Choose mean of p to match form of mean of q

ELBO for a DDPM: Training Objective



• What is 9𝑥)(𝑥$ , 𝑡)? Neural network that seeks to predict 𝑥' from noisy image 𝑥$

• Therefore, optimizing a DDPM boils down to learning a neural network to predict 
the original ground truth image from an arbitrarily noisified version of it.

• Furthermore, minimizing the sum across all noise levels can be approximated by 
minimizing the expectation over all timesteps, which can then be optimized using 
stochastic samples over timesteps.

ELBO for a DDPM: Training Objective



• ELBO objective can be further rewritten as:

• Can train a network to predict

ELBO for a DDPM: Training Objective



• Plugging our previous finding 𝑥' =
*!( !(+!,"

+!
 into the denoising 

transition mean µ- 𝑥$ , 𝑥' , we have: 

• This inspires us to approximate the 
denoising transition mean as 
choosing the mean of p to match q:  

Reparameterization as an Alternative Form for ELBO



• The model predicts the noise to be removed in each step (i.e., denoising) by 
optimizing denoising matching term. This reduces to minimizing the difference 
between the means of the two distributions:

ELBO for a DDPM: Noise Predictor

= 𝑥$	



• The complete sampling procedure, as we have described, iteratively executes the 
denoising process from a Gaussian initialization 𝑥#.

The variance is a scheduled constant:

Sampling from Diffusion Model

Recall: 𝑞 𝑥!"# 𝑥! , 𝑥$ = 𝑁(𝑥$(!; µ+ 𝑥$ , 𝑥* , 6
Σ+ 𝑡 )

Our trained noise 
predictor

As we have derived:



Summary
• Our key idea is to find a way to learn the reverse process.
• Give a (corrupted) image and its current time step, the neural network predicts 

the noise for next reverse time step.



Implementation
• DDPM often uses U-Net with residual connection and self-attention layers to 

represent         .
• Time representation is conditioned in the U-Net as sinusoidal positional 

embeddings or random Fourier features.
• Given a (corrupted) image and its current time step, the U-Net predicts the 

noise for next reverse time step.



Implementation
• Samples of DDPM


